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ABSTRACT

For, parabolic integro-differential equations of the form

t

(0.1) ut(.,t) + Au(°,t) + f g(t - s,u(',s))ds = f(,t)t 0

on a time-space cylinder 9 x [0,-) the question of convergence of solutions

to a limit solution is studied. Here A is (e.g.) the negative Laplacian,

and 9(s,u) is typically of the structure

N(0.2) g(s,u) aiI a(s)gi(u)"

i=

The kernels aiC.) have to satisfy certain decay properties, but no

assumptions concerning the smallness of the gi or of their derivatives are

made; rather, the main assumption on the gi is that they be monotone.

Uniform convergence of solutions and 'f their derivatives for general initial

and boundary conditions is shown; convergence rates are given which show the

dependence on the spectrum of A and on the decay properties of the kernels

a.
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SIGNIFICANCE AND EXPLANATION

Integro-differential equations arise in the description of feed-back

control systems, where the control variables are derived from 
4 -iltered."

observations of the state or where the control mechanism possesses inertia.

We-itudy-a model equation for a distributed* control system (e.g., the state

varies over some space-like domain) which contains also some diffusion effects

and give conditions under which the state will tend to some limit, as time

goes to infinity, regardless of the initial situation. The limit is shown to

satisfy an elliptic differential equation. Convergence rates are also given;

-ey show the *slowing-down effect of a slow control mechanism on the

convergence of the state variable. The problem under study can also be viewed

as a natural extension of a type of reaction-diffusion equation that has

received wide attention in the literature.
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STABILIZATION OF SOLUTIONS FOR A CLASS OF PARABOLIC INTEGRO-DIFFERENTIAI EQUATIONS

Hans Engler

1. Introduction

The purpose of this article is a study of the asymptotic behavior of solutions of

semilinear parabolic integro-differential equations

t

(1.1) 3tu(x,t) - hxu(x,t) + f g(t - s,x,u(x,s))ds = f(x,t)
0

in a semi-infinite time-space cylinder U x C0,"). Here n is a domain in R , Ax  is

the Laplacian, and g is a real-valued function, typically of a "semi-separable"

structure

N
(1.2) g(sx,u) = X a (s,x) • k.(x,u)

J=1

The precise assumptions are stated in Section 2. Equation (1.1) (with g as in

(1.2)) can be obtained from the system of parabolic and ordinary differential equations

(1.3) tu(x,t) - Axu(x,t) bT() * (xt)

(1.4) d V(x,t) + A(x)V(xt) = k(x,u(x,t))

which models a feed-back control system, where the vector V of controls depends on the

state variable u through a control mechanism with inertia (expressed by the matrix

differential equation (1.4)); see [12) for detailed discussions of the corresponding

ordinary differential equation and C14). We want to consider (1.1) as a natural extension

of the semilinear parabolic equation

(1.5) 3tu(xt) - xu(x,t) + g(x,u(x,t)) = f(x,t).

Sponsored by the United States Army under Contract Ho. DAAG29-80-C-0041. Supported by
Deutsche Forschungsgeineinschaft.
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For (1.5) with t-independent Dirichlet-boundary data it is well-known that for g

satisfying au g(x,u) P 0 the solution u(*) converges to a steady state solution u

of

(1.6) -x(X) + g(x,u.(x)) = lia f(x,t)
t+-

if the right-hand side limit exists. Moreover, if, e.g., f is t-independent, then

-Ao

(1.7) lu(.,t) - u.(*)l ( C eA

for some appropriate norm 11, where A0 > 0 is the principal eigenvalue of -x.0 x

A quick proof of this fact (assuming the necessary regularity for u and f to be

t-independent) consists in differentiating (I.5) with respect to t and multiplying the
20t

result with e 2 3tu(.et). After integrating over Q x [Ot] this gives the estimate

1 2A0t t 2A0S
(1.8) e * Iatu(t) 2

_ - a A0 " 13tu(*'a)12 d
L
z  

0 L
2

t 2A~s2 2

+ f e IVa u(°,s)E 2ds < I aU(,O)2
0x t L 2 2 t 2 L

2

from which the estimate

(1.9) 
13tu(.,t)l 2 4 C * eA

L

follows by the variational characterization of A0,

IVxw ,2 ) X0  f IwI2  for all w e w1 ' 2  )

The estimate (1.7) then follows (with the L
2
-norm). We want to study the same questions

for the equation (1.1):

a) What are conditions on g that guarantee the convergence of u to some limit u.?

b) What are the convergence rates?

We are also going to use the same approach as sketched above.
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A few remarks are in order to indicate what results one can expect and under which

conditions.

Mi) The equation for the limit u should be

(1.10)-x + f g(sx,u(x))ds - lim f(x,t)
0 t+-

and we would expect to get convergence for any boundary data for which (1.10) has a

solution. Also, if we want to deduce estimates like (1.7) (which imply convergence for

any initial data), then the limit equation (1.10) should have a (unique) globally stable

solution, and of course the integral in (1.10) should converge; i.e. 9(s,u) should

become "small* as s goes to infinity. If we assume instead that

g(-,x,u) - lim g(tx,u)
t 4

is not identically zero, then we would only expect a solution u to exist if

additionally (at least)

0

for the boundary data Z. We shall not deal with the case g(-,.,.) 0 here.

(ii) In the case of "small" perturbations, e.g.

(1.11) f e-6 8 . sup I3u(s,x,u)Ids < X0
0 X#u

for some 6 > 0, stability of the steady state solution u (from (1.10)) has been shown

in various settings (see, e.g., [51). This would correspond to the condition

(1.12) sup 13ug(X.u)l < A0

x ,u

for the equation (1.5)t we shall here look for conditions that generalize the sign

condition 3u g(xu) ) 0.

-3-.



(iii) We now look at the special case

(1.13) g(s,xu) - a(s) (L • u + M)

with L 0 0, N e R, a(') some kernel.

Taking M - 0, L > I., and (formally) a = 
6
T (6-distribution with unit mass at

t - T), we see that a solution of the form

(1.14) u(x,t) = cos(;t) 0

of (1.1), viz. of

Stu(xt) - Ax u(x,t) + L u(x,t - T) = 0

exists on the whole real line, if

f W 2T_: -
(1.15) "

1 a -

T -- arc n()

where #0 is the normalized eigenfunction of (-Ax ) for the eigenvalue A0 . This

phenomenon of "oscillations (i.e. instability) introduced by delays* is well-known and

will persist if we approximate a = 
6
T by a. - C I [TT+c] for sme small c; cf.

[4). We shall exclude these "Hopf-bifurcation" type phenomena by introducing certain

assumptions on the kernel a(*) (convexity).
-as

(iv) Taking L - 0, N + 0 arbitrary, a(s) - a in (1.13), the resulting linear

equation (1.1) can be solved *explicitly" for zero Dirichlet boundary data by means of the

"variation-of-constants" formula (fundamental solution), cf. [7]. As a result, the

-Bt
solution will converge to the limit u at the rate e , where B - min(al 0 ). Hence

we expect the convergence rate for general equations (1.1) to be not better than the decay

properties of the kernel functions appearing in (1.2), or of some related quantities

derived for the function g.

(v) Finally, if j(x,u) - L I u in (1.5), then (for L > -X ) the convergence rate of
-(L+Xolt

solutions will be improved, namely lu(,t) -% will be of the order e That

a similar phenomenon can not be expected for equations of the type (1.1), can be seen by

-. aslooking at the case (1.13) again, with a(s) - e , 54 = 0. Let n
.  

be an

-4-



convergence and existence results require the adaptation of a standard *bootstrapping'

technique to prove regularity and boundedness. Sections 2 and 3 only deal with the case

that g in (1.1) does not depend on x.

In Section 4 we indicate how to extend the results to arbitrary time-independent

Dirichlet boundary data and to x-dependent nonlinearities g. We also indicate how to

include more general elliptic operators instead of the Lsplacian. In Theorem 9, we state

a result that covers the case of (inhomogeneous, time-dependent) boundary data of the

third type,

(1.22) V u(xt) + a(x)u(xt) = f1 (x't) (x e an)

where 3. denotes the outer normal derivative. In Theorem 10, we give conditions that

imply the same convergence results for solutions of equations of higher order,

t
(1.23) 3tu(xt) + (-A )

m
u(xt) + f g(t - s,u(xs))ds - f(x,t),t •o

m ) I some integer. We conclude with some remarks about systems and equations of higher

order with nonlinear differential operators under the integral and with open questions.

It is a pleasure to acknowledge the hospitality and the stimulating atmosphere at the

Mathematics Research Center, University of Wisconsin-Madison, and at the Department of

Mathematics. Northwestern University, Evanston, where the author was a visitor while this

work was prepared.
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2. Statement of Main Results

In this section we study the parabolic integrodifferential equation

(2.1) a tu(x,t) - A u(x,t) + f g~t - e.u(x~s))ds =f(x,t) (x e n~, t e (o,-))

with initial and boundary conditions

(2.2) u(x,0) U0(x (x e 11)

(2.3) u(x,t) 0 (x e an, o 4 t <)

Here 9 C TP is a bounded open domain with smooth boundary ail (locally, an should be

the graph of a C -+afunction, a >0);

Ax I !L is the Laplacian
i.1 axi2

and

g :(0,-) x R +

is a given function which is (at least) continuous in both variables. The data U. and

f are given functions on 2 reep. on 0 x 10,-).

We are interested in solutions u which are in

(2.4) LP(0,TuW 2 ,pC0)) o~ W ~PQOT1LP M)

for all 1 4 p < - and all T > 0. Such solutions wilV. be continuous together with their

first x-derivatives on 5 x (0,T] (see (101).

For later convenience we define

u
(2.5) G(s'u) -f g(s,r)dr for u e R. a > 0

0

After possibly changing the right-hand side f, we can sems that

(2.6) g(s,0) =0 for all a

The assumptions on u. and f are

-8-



(2.7) UO e 2 ,(l)

(2.8) U. e v1,2
0

(2.9) f e L7(al - (0,T)), a Itf e L I(0,TsL 2 ())

for all T > 0. For g and G, we shall use the assumptions

(2.10) ux * G(s~u) is convex for all a,

(2.11) ux - -G'(a,u) exists and is convex for all s

(2.12) (s~u) '9 g(s,u) is continuous

(2.13) g(s,u) *0, as s - for all ux

Here

G'(su) -G(su)

similarly q"(s,u) = ig(s,u) etc. Finally, let A denote the principal eigenvalue

for (-A ) on S1 with zero Dirichlet boundary data.

Theormi Is Let u he a solution of (2.1)-(2.3) in the sense described above, and let

u. and f satisfy (2.7)-(2.9) and g reap. G satisfy (2.5), (2.6), (2.10)-(2.13).

Assume that there exists a K > 0, such that for all u, g*(*,u) is absolutely

continuous and for almost all s

(2.14) u* -g(s,u) + K *g(e,u) is non-decreasing

Then

(2.15) fI3tu(*,t)I dx - b(t) f c (uOf) for a.e. t, It 4 T

(2.16) fTf IV a u(.it)I 2 dx * L) dt C C(U 0 0f)

0 Q x t(log b(t) + 1)1+

for every T and every 6 > 0.

Here

(2.17) b(t) - exp(t * min(ic,2 X

where C0  (reap. C ) depend on ni and on

-9-



(2.1) (f t f(t)2 • b(t)) 1/2dt
w (9) 0 a

(reap. additionally on 6 > 0).

Theorem 2: Let uu 0 ,fq satisfy (2.1)-(2.3), (2.5)-(2.12). Assume that for all b > 0,

u such that g(0,u) + q(Ou + h)

(2.19) a # loq(g(su + h) - g(s,u)) exists for all a and is convex I

and define

(2.20) -KC(S) $ Upf tg,"'~ + - 9" I'u o , u e a, g(s,u + h) +' 9(s,u)Ig(au + h) - i(su)

Then

(2.21) f 3t u(*.,t) 
2

. b(t) 4 C0 (u0 ff) for a.e. t 4 T •

T bt

(2.22) f f IVxa u(-,t)12dx b(t) dt 4 C6 (u0 ,f)
0 D (log b(t) + 1)1+6

for every T ) 0, > • 0.

Here,

t

(2.23) b(t) * exp(f min[KC(s),2 • 0 }ds)
0

and C0 , C6  depend on the same quantity (2.18) (and additionally on 6 > 0) as the

constants in Theorem 1.

To illustrate the conditions (2.10), (2.11) and (2.14) reap. (2.19), we consider the

examples

(2.24) 9(t,u) - ao(t) g0 (u)

and

-10-



N
(2.25) g(t,u) = aj~t) *qi(u)

Let us assume that a 0 (O) = I = a 1(O) (1 4 N). Then (2.10) and (2.13) hold if

(2.26) a0 (s) > 0

a0 (s) + O, as a~
(2.27)

go is monotone non-decreasing

reap. if (2.26) and (2.27) hold for all ai and gi. The property (2.11) will hold if

additionally

(2.28) a;~(B) 4 0 reap. &a) 4 0 (0 4 a 4 T) for all J

and property (2.14) is implied by

(2.29) aa(s) + Kc - &;a 0 (a > 0)

reap.

(2.30) al(s) + 1c ajl(s) > 0 (a > 0, 1 4 1 r. N)

Finally, for g of the structure (2.24), the assumption (2.19) means

(2.31) log a 0( is convex on C0,")

and (2.20) amounts to

(2.32) Kc(8) = s--=-(log a0 (s))'

uch that 
In (2.23)

(2.33) b(t) = ,if as + 2Aa()> 0 for all a

reap. b(t) - e 2X0ton the interval where a6 + 2 A0 a~ ( 0.

Similarly, if g has the form (2.25), then the assumption (2.19) holds if

(2.34) log a ( is convex on [0,") for all

and in (2.20) we can take

(2.35) ic(s) =min

-11-
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such that in (2.23)

(2.36) b(t) -= i
lUirN a (t)

if &!(a) + 2X 0 a Cs() > 0 for all s and some i, with the obvious modification

(2.37) b(t) - e 10a

if on some interval (O.t0 1 al(t) + 2X 0a C t) < 0 for all 1.

Conditions (2.29) reap. (2.30) show further that in Theorem 1 g could be of the

structure (2.24) with same of the a. possessing bounded support. a possibility that is

excluded by (2.34), whereas in Theorem 2 same of the a i could decay like t , which

does not give a 7-independent constant Kc in (2.14) of Theorem 1. In the typical case

where all the a i are decaying exponentials. both results apply and give the same

formula.

Pram the estimates (2.16) reap. (2.22) we get some information on the asymptotic

behavior of solutions.

Corollary 3: Let u be a solution of (2.1)-(2.3) on 12 x [0,-), and let all the

asuptions of Theorem i hold. Further assume that the space dimension n is equal to

or that

(2.38) lg(O,u)l 4 C (Il + 1) for all u e R

with some C >0, some q >0, if n 2, and 0 4q < -, if n 3, and th&t

0 n

(2.40) ess sup If(x,t)I <

with b(l) as in (2.17). Then

-12-
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u(°,t) * u

(2.41) * as t -

V u(o,t) + V u

uniformly on D, and u,, solves

(2.42) -A xU(x) + f q(s,u.(x))ds " f,(x), (x e Q1
0 

1

(2.43) u(x) 0 (x e a)

and r

(2.44) f, - V l c,t) .
t+"D

A few remarks about the limit equation (2.42) are in order:

(i) The conditions (2.39) and (2.40) guarantee that the LP-limit in (2.44) exists for

all p < ,since

-2 t 2
(2.45) *f(*,t) - f(,)l 4 If(,t) - f(.,a)l 

P  if a f( T )d T p,
Lp  L

2 2
t t p

4 c * (f ma WT 2 - *~TP f -I- 0
t t 2 bC)d a b )

it s,t + *0. Thus f. exists and is essentially bounded, since it is also the weak-*-

limit of f(*,t) in L (().

(1i) The solution % solves the variational problem

(2.46) J(u) - f 1_ IV 1I 2 + f G(au(x))du - f- • udx m in.

in W0 '2(A). Here the integrals

(2.47) f[ G(a,v)ds, f" g(l,v)da

0 0

-13-

'.ILE



are finite for all v e R, since (2.13), (2.14) imply that

(2.48) s + (G*(s,u) + mG(S,u))

is increasing for all u and vanishes for s *.Thus G'(s,u) + K - G(s,u) 4 0, and

(2.49) 0 < e OG(s,u) 4 G(0,u)

for all a and u, which proves the existence of the first integral in (2.47). The

existence of the second integral in (2.47) follows with a similar argument.

Standard theory then shows that the solution u_ of the Euler equation (2.42) for

the problem (2.46) exists, is unique and is in the class n W 2 ,(I) (cf. [111): we

only have to note that

v - f g(s,v)ds
0

inherits the monotonicity from the g(s,u).

Corollary 4: Let u be a solution of (2.1)-(2.3) on SI x [0,-), and let all the

assumptions of Theorem 2 hold. Further assume the growth conditions (2.38) and the

boundedness assumptions (2.39) and (2.40) of Corollary 4, with b(-) given by

t

(2.50) b(t) = exp(f min{K(S),2 . . ds)
00

and K as in (2.20). Finally let

0 b(s)

for some 6 > 0. Then

u(*,t) + U.
(2.52) as t -

V xu(-,t) + Vu%

uniformly on (0. The function u, solves the limit equation (2.42) with boundary

-14-



condition (2.43). Again, the conditions (2.10) and (2.11) guarantee that

(2.53) u s* f g(s,u)ds
0

exists and is monotone for all u, due to

s

(2.S4) sign u * g(s,u) g(s,u)l 4 Ig(0,u)• exp(f -(T)dT)
0

11

and the integrability of

We also note that in the situation of both corollaries the convergence of higher

derivatives of (u(*,t) - u.(*)) to zero can be shown, if the right-hand side f and

g satisfy suitable smoothness properties. It is enough to show that sufficiently high

derivatives of the solution will stay bounded and to interpolate with (2.52).

We finally give an existence result for solutions of equations of the type (2.1)-

(2.3) which is sufficient to cover the cases treated above.

Theorem 5: Let u0 , f, and g, G satisfy (2.5)-(2.12). moreover, assume that G'(',u)

is continuous for every u and that

(2.55) u - G'(s,u) - G'(s + h,u)

is convex for every 0 4 a 4 s + h. Finally assume that

(2.56) Ig(0,u)I 4 C (ure q (n) + 1) for n ) 2

where C is some constant, q(n) = n- 2, if n ) 3, and q(2) is some constant.

Then (2.1)-(2.3) has a solution u in the regularity class (2.4) on Q x [0,T).

If g has the structure

N
(2.57) g(su) = ( (u)

i-I

-15-



then Theorem 5 applies if the gi are non-decreasing and satisfy the growth condition

(2.38) and if the ai are positive, non-increasing and convex. It is possible te relax

these conditions to

(2.58) u * gi(u) + N * u is non-decreasing

for some N ) 0,

(2.59) ai e w'(0,T)IR)

i e BV([OT),3)

a (O) > 0

It should be noted that the growth condition (2.56) in Theorem 5 is slightly more

general than the condition (2.38) in Corollaries 3 and 4, where the "limiting" growth

exponent is not permitted.

We finally give a result for the situation with less regular initial data.

Corollary 5.A:

(i) Let all the assumptions of Theorem 5 be satisfied, except that u0 () is only

required to be in L (0L1. Then there exists a weak solution u af (2.1)-(2.3) on

0 x C0,T]

(2.60) u e L (0,TIL"(0))

(2.61) u e LP(E,TIW
2
,p(9)) ) WC'p([C,T],Lp

for any c > 0.

(ii) Let all the assumptions of Corollary 3 hold, except that u0 (,) need only be in

L(). Then all the conclusions of Corollary 3 hold.

(iii) Let all the assumptions of Corollary 4 hold, except that u0 (*) need only be in

L (Q). Also, assume that

(2.62) f ds<-

with b(*) defined as in (2.23). Then the conclusions of Corollary 4 hold.

-16-



3. Proofs

Zn the proofs of Theorems 1, 2 and 5, use will be made of the following Leema:

Lemaa 6: Let h : R a be non-decreasing, and let ab 10,T) + I be such that

(3.1) a is absolutely continuous, a' 4 0 ( a on [0,T]

(3.2) b ) 0 on (0,T]

(3.3) b * a is absolutely continuous

(3.4) s- b(s + T) • a(s), s e [0,T - T]

is non-decreasing for a.e. T e (0,T)

l t v e W' ([0,T],R). then for 0 4 t ( T

t d (

(3.5) f v'(s) , b(s) (f aa - r)h(v(T))dT)ds
0

Proofs We first assume that a 6 C
2
([,T],k), b e cl([0,?JR), and that (3.1), (3.2) and

t 5
(3.6) 1 b(s) • v(s) • - (f a(a - )h(v())di)ds

0 0

t
= f b(s) * a(0) * v'(s) * h(v(s))ds 4

0

t d

+ f b(s) • v'(s) ( f a'(s -T)h(v(T))drds

0 0

The first integral on the right-hand side is

-17-
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t
(3.7) a(0N((b(t)H(v(t)) - b(O)H(V(0)'1) - f b'(a)H(V(S))ds)

0

The second integral can be transformed to give

t t
(3.8) f f b(s)al(s-T)v'(s)ds h(v(T))dT

0 T

f [b(t)a'(t-Tr)v(t)-b(,r~a(O)v(T) f d ~ (b(B)a*(s-r)) *v~s)ds) h(V(T))dt
0 Td

The monotonicity of h implies that this is

) f {H(v(T)) - H((1 + Ab(T)a'(0))V(T)-
0

- b(t)a'(t - T)V(t) + A f (b(s)a-(s - T))v(s)ds))dr
T d

for all positive A. Choose X so small that

(3.9) 1 + Ab(T) a &(0) > 0 (0 4 T 4 t)

Since also

(3.10) -b(t)a'(t - r) ), 0

(b(s)a'(s - T)) )- 0

by (3.4), and

(3.12) 1 + Ab(,r)a (0) - Ab(t)a'(t - T) + A f d- (b(s)a'(s T))ds I
Tdo

the convexity of H now implies that the term in (3.8) can be further estimated by



t
(3.13) ... ) J fb(t)a'ft - T)H(v(t)) - b(T)a'(O)H(v(T)) -

0

t
_dif s (b(.).'l. - MlHlvlsllds~dt = blt) * Hlvltl) Wtal) - (Ol)

T

t
+ f (b'(s)a(O) - b'(s)a(s) - b(s)a'(s))H(v(s))ds .

0

combining this with (3.7) we then get the first half of (3.5). The second half of (3.5)

is simply an integration by parts.

To get the estimate (3.5) for general a's and b's, we approximate a,b by

smooth an ,b n  such that the anrbn still satisfy (3.1)-(3.4) and

an(O) - a(O), bn (0) - b(O)

(3.14) in L l0(,T;)
bn b

Then also

(3.15) (an bn)' + (a • b)' in LI(0,T;I)

and
(3.16) ((*,1) 4 b (s) * a'(T)) + b(s) * a(T) in L(

1  
,2,

(316 n(,T ((0,T] ,R)

we can thus pass to the limit and get (3.5) in the general situation.

QED.

As a consequence, we get the

Lemma 7: Let 9 : [0,T) x R + R be continuous, g' be continuous, and

b : [0,T) + [0,-) be absolutely continuous,

(3.17) g(s,u) and -g'(s.u) be non-decreasing in u for all s

(3.18) s b(s + T) * (g'(su + h) - g'(s.u)) be non-decreasing for

every - < u ( u + h < - and all T e [0,T)

Let v e W'l((o,'],R).
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Then for 0 4 t 4 T

(3.19) f '(s) *b(s) *d (fo g(s - ,())Td

0 do0

t

Sb(t)G(t,v(t)) -b(0)G(0,v(0)) - f G1 (s~v(s))do
0

where

(3.20) G(s'v) - f g(s,r)dr
0

and

(3.21) G (8'v) . d (bs *~~)I do

Proof: We first assume that g is smooth; i.e. that g' 9 is continuous. Thenauas0
(3.17) is equivalent to

(3.22) g0 (s,u) )0 > gu.(s,u) for all 8,0

and (3.18) is equivalent to

(3.23) a - We + T) Ig(s'U)

is non-decreasing for every u e3 14 T e 0,T)

Now write

(3.24) g(S'u) - g(z,0) + gf q(s,r) * hr (u)dr

with

-1, v 4 r 0

(3.25) h r(v) 1, 0 4 r -C v

r 0 for all other r,v

Each h r) is non-decreasing, and
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r- v, v 4 r 4 0
v~(

(3.26) H r(v) - h r(z)dz v r, 0 4 r 4 v

0
0 for all other r,v

Inserting the representation (3.24) into the left-hand side of (3.19) and using Lemma 6

for every term then gives

t d s
(3.27) O s) b(s) , T (f g(s - T,V(T))dT)ds

0 0

) f {b(t)(t,r) rVt)) - bO)gu(O,r) VO)) -

- *f - Cb~~g (~r))HCv~s)ds)d

ul r dsldr

t

+ b(t)g(tO)v(t) - b(O)g(OO)v(O) - f d(b(s)g(s,O))v(s)ds

0

An integration by parts then gives the estimate (3.19).

If g' is only continuous, then the approximation

g (s,u) = f U g(s,r)dr
U-C

gives a smooth gC for which the estimate (3.19) holds. The passage to the limit as

C + 0 is straightforward, thus (3.19) holds in the general situation.

QED.

Proof of Theorems I and 2:

(i) Let b : [0,T] + U be any absolutely continuous function. Define the backward

difference operator

dh k(t) - for h 4 t 4 Th

if k : (0,T) + 3 is measurable. We apply dh to the equation (2.1), multiply with

b(t) * dhu(t) (for h 4 t 4 ) and integrate the resulting quantity over Q x [h,ij.

-21-



After an integration by parts, this gives the identity

(3.28) f Id-u(2. )l 2 bti) - f IIdhut,h) 12 • b(h)
2 bh~d 2 2

2 Iu '  
, 1 2I I IVbdeu('.I " b(s)d.

t 5
+ f f dh u(,s) * b(s) * dh ( g(s - r,u(',T))dT)ds =

hh 0

S11 du(.,s) b(s) • (.,,)ds

h Q

Since

t
t f I g(t - su(,,s)ds + f(U,t)

0

is in W'
1 
([O,T],L

2 
()) by assumption, we can send h to 0 in (3.28) and obtain

( I .ut.t)) . b(t) - f f IV ut(.,s)l b(s)ds

+ f f u (-,s) • b(s) - (f g(s - T,u(.,T))dT)ds =

1 f~ IA.U0 + f(.,0)I 2. b(O + of 2 *u(,~ b'(s)dsl
0 2 0

t tt

+ f f ut (,s) • b(s) * ft(-,s)ds
0 Q

where the index t denotes partial differentiation with respect to t. Note that a

differentiation of (2.1) with respect to t shows that in fact ut  (and hence A u) are
X

continuous from (0,T) with values in L2 () (cf. [10]).

(ii) We next choose b such that the third integral on the left hand side of (3.29) can

be estimated. In the situation of Theorem 1, take
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(3.30) b(t) - exp~min(iC,2X 0  t)

as in (2.17) (with K > 0 as in (2.14)). Then (2.10). (2.11) and (2.12) show that MMt7

holds. Also, (2.14) together with this choice of b implies that (3.18) holds. Thus

Lemma& 7 allows to estimate

(3.31) f u (x,a) * b(s) * -(f g(s - T,u(x,T)dT)ds >
0 t o0

)b(i)G(,u(x,D)) - b(O)G(0,u(x,0)) -fGj(s,u(x,s))ds

0

for a.e. x e 2. Gi(s.v) Web~) *G(n,v)) e *K -~ G(o,v) + G*(s~v)),

' in(K,2X ). Again, (2.11) and (2.14) imply that

a * (G (s,v) + ;G(s,v)) 4 0

and from (3.19) we get that finally

(3.32) f ut(x.e)b( a *s (f 9(s - T,U(X,r[))d,[)ds ;0 -G(0,u(x,0))
0 de0

for ae. x e A.

Inserting this into (3.29) gives together with Poincarg's inequality

(3.33) f Iut(_,t)12 b(t) 4 2 f G(0,u(*.0)) +

+ 2 *f (1A xU(0)1 2 + IMI0 2) + 2 f If u (*,B)1 2 .b(s)) '/2.
0 X og a

2(f if t 0,01 . b(s)) '/2 do

An application of a version of Gronwall's Leomma ([21) then results in the estimate (2.1).

Inserting this estimate back into (3.29) we arrive at
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(3.34) f f IV u(.,s)1
2

• b(s)ds 4 C(uo,f) + - I Iu(-s) 2 b'(s)ds

4 C(u 0 ,f) * + 1 b's) do) - C(Uo,f) (I1 + log b(i))

for all t. Applying Lemma 8 below gives the estimate (2.16), and the proof of Theorem 1

is complete.

(iii) To prove Theorem 2, we take

tb(t) = exp{f min{K(sl,2A Ids)

00

as in (2.23), with K(*) as in (2.20). We then have to check whether (3.18) holds with

this choice of b(-). Thus let - < u < u + h < - and consider (for T 0 fixed)

(3.35) a # b(s + T) • (g'(s,u + h) - g'(s,u))

From (2.19) we infer that this function is identically zero (iff g(0,u) = g(0.u + h)) or

has bounded variation. Its derivative (as a measure) is

b'(s + 1) , (g'(s,u + h) - g'(s,u)) + b(s + T) • (g"(s,u + h) - g (s,u))

and this will be non-negative iff

(3.36) (g*(e,u + h) - g'(s,u)) ) (gl(s,u) - g'(su + h)) (b(s T

Now -log b is convex (since K(*) is decreasing), and it is enough to verify (3.18) for

T - 0 or

(3.37) (g*(s,u + h) - g*(s,u)) ) (gq(su) - g'(s,u + h))(K(s))

Recalling the definition of i(.), it is obvious that (3.37) is implied by the log-

convexity assused in (2.19).

We thus get the estimate (3.31) as in the proof of Theorem 1. Also,

do(3.38) (b(s) •G(s,v)) ( 0

or equivalently

(3.39) b'(s) • G(s,v) < -G'(S,v)

which is implied by
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b'(s) 8 v if g(s,v) + 0

(3.40) b(s) g(s,v)

and this follows from (2.20) and (2.23).

Continuing as above, the estimate (3.33) implies the first assertion (2.15) of

Theorem 2, and (3.34) together with Lemma 8 implies (2.16), which completes the proof of

Theorem 2.

QED.

Lema 8: Let k : [0,-) + [0,-), b : [0,-) + [1,w) he functions, let b be non-

decreasing, and assume that for every t > 0

t

(3.41) f k(s) I b(s)ds < CO  (1 + log b(t))

0

for some CO > 0. Then for every 6 > 0 there exists some K(S) > 0 such that

(3.42) f k(s) * b(s) * (0 + log b(s))- ds 4 K(6) CO

0

Proof: If b is bounded, the assertion is clear. Otherwise define

(3.43) to . 0
1 +__lo_ (t)

(3.44) tl+ I - 1 + log -
< 

2) for i > 0
i1,sup 1+ o b(t.)

Without loss of generality I + log b(ti+I) - 2 • (I + log b(ti)) for all i.

Now if t ) 0, such that ti > t, and 6 0,

t --
f k(s) • b(s) - (1 + log b(d)) d

0

t
i-1 J+1 -1-6

4 X k(s)b(s)(1 + log b(s)) do -

j-0 t

4 2 (1 + log b(tQ)1
6  

CO " (I + log b(tj+l))
J-0

C i + log b(t + 1 )

SjO (1 + log b(t)
1
+
6
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and the infinite series converges because

I + l o g b ( t J + ) 1  + l o g b ( t 2) ) 2 6

(1 + log b(t) 1 + 6  
(1 + log b(t1 ))

The example b(s) - ea - k(s) 
1 shown that (3.42) does not hold 

for 6 0. . D.

Thanks are due to Bob Pego for suggestinq the argument of this lewmta.

Proof of Corollaries 3 and 4: Let A be the Laplacian in LP (1) with zero Dirichlet
p

boundary condition and its natural domain of definition D(Ap) - W 2) n W 0

(1 < p < -), and let (S (t)) he the analytic semigroup generated by Ap in LP )

(see 7]). It is well-known that

(3.45) IA S (t)wI C C(p,Q) * + 1 e * tWI
p p Lp~

L l .) t L P ( Q )

(3.46) Ivi I C * IWA 
-  IviC

C 1(5) P LP (fl) W
1
'
2
(fl)

if w e LP (O), v e (A ), t > 0, a > 0, such that
P

n I

(3.47) 2 + 
<  

a 1 ,
2p 2

(3.48) 0 < C < p (4a - 2) - 2n

p * (n + 4M - 2) -2n

Here, Aa is the fractional power, defined as usually,
p

a , 1 ,O tz-1S ( l t -(3.49) A r
(3.49) Af ~ t S (t)dtj

Then the solution u of (2.1)-(2.3) can be written as
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t t s
u(t) Sp(t)u0 + f S p (t - s)f(s)ds + f Sp (t - a) f g(s - T,U(T))dTds

0 0 0
(3.50)

-u 1(t) + u2(t)

where the argument x has been omitted for convenience. We want to show that for

sufficiently large u,p (such that (3.47), (3.48) hold with C > 0)

(3.51) IA au(t)l C for all t > 0
p LP(M

Once (3.51) has been shown, it follows from the results of Theorems I and 2 and from

(3.46) that for any 0 4 9, t < -

(3.52) lus) - u(t)l I Iu(s) - u Ct)IC
C11 ) W

1
'
2
()

t
4 C • if Vut (T)dTIc 2

a L

C . ( 1 + lo b(r))1 d. ) 0
b(T)

as s,t + -, which will prove (2.411 reap. (2.52).

We proceed to show that (3.51) holds, by deriving the estimate for uI and u2

separately. The estimate for u, follows from the regularity assumptions (2.7), (2.8)

(which implies u0 e D(A ) for all a 4 1 and all p < -), from the uniform boundedness

of of(-)l on [0,"), and from the property (3.45).

Next we note that the W
1
'
2
-eetimate (2.16) for ut  and the integrability condition

(2.51) (resp. the definition of b) imply that

(3.53) sup lu(-,t)I 1 C <
04t W1,24a)

If n is an interval, this implies that u is essentially bounded, and the property

(3.54) Ig(,u)I b-s) , Ig(0,u)l

show that for all x and t
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Ift g(t - s,u(x~s))dsl 4 C j f do.<
b(s)

The bound (3.51) then follows for u 2  as it followed for u,.

If the space dimension is bigger than one, (3.53) still bolds. We apply A a to both
p

sides of the equation that defines u2 (a < I to be chosen later, but big enough such

that (3.47) and (3.48) hold) and writs

(3.55) w(t) - eecspI~~)

0(s"t I.

t -0 -A (t-S) a I
(3.56) WMt f C(p,a) ,((t - ) + 1) f b~s T le ~ u ) drds

t B(t - s)Ig(O,u(s))I do

with some B e L (0,I). If n ;0 2, then by (2.38) for same q

(3.57) Ig(O'u(S))M C *(I + usl

Lp Lpfq(a

and for n - 2

(3.58) 1g(0,u(s))I L ( C 0 (+ + uSl ,

since the imbedding W 12 (g) + Lp'(S2) is bounded. Thus w(-) is uniformly bounded also

in the case n - 2 which proves (3.51) again. Finally, if n > 3, we pick a such that

(3.59) 1 > a > (q 2 ). ~ ,q asi 23)

and r < - such that

(3.60) -(q - I) * -..2 - 1_
p 2n r n f

Then from s standard calculus inequality (see (7])

(3.61) 1 Pv((2 W V 1,2-

L ~ ~ (2 pV a , , (()
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(3.62) Iv 1 r C . IAOVI " /y1-0 2

W , (a) P LPM) w1, (a)

4 £IA VI + C(E) • Iv 1

P lP(a) W1(11

for all suitable v, for sme B < 1, and thus for all c > 0 (with some C(W) > 0).

Inserting (3.61) and (3.62) into (3.57) and the result into (3.56), we get from the

Wv'
2
-bound for u and the L-bound for u, that

t
(3.63) w(t) 4 f B(t - a) * (C(6) + 6 * w(s))ds

0

1 (f-s1)
I  

tl hw h

and 6 can be made arbitrarily small. If 6 (f -s t

2 01D)i) ti hw h
essential boundedness of w(-), which was needed to complete the proof of the

Corollaries.

QED.

Proof of Theorem 5: We apply a standard fixed point argument. For p < -, denote by

X p(T) the space

(3.64) LP(o.TiW 2,P(Q/) n W0"1(9)) r) wl"Pl[0,T)lLP(Ql))
p'

LP(0,TjD(A p)) n W 'l[0,T],Lp())

with Ap defined as above. For 0 < a 4 1 and v e XP(T), let w - K(av) be the

unique solution of

t

(3.65) 3aW(XtI - v(x,t) + * a g(t - s,v(x,s))d# - f(x,t) (x e 9, 0 < t 4 T)
0

(3.66) w(x,t) E 0 (x e 3n, 0 4 t 4 T)

(3.67) w(x,0) E u0 (x) (x e Q) .

since XP(T -- CO(5 x (0,T],R), if p > + 1, with compact imbedding, w is well-

defined, and K : 0,1] x X p(T) + X p(T) in completely continuous (see [101). Obviously,

u e Xp(T) is a solution of (2.1)-(2.3) iff KCIu) - u; and since K has range in

f X (T), u will automatically be in the regularity class (2.4). Let now p > n+
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be fixed; we show that for some large constant M and for any 0 4 a 4 1 the conclusion

holds

(3.68) K(O,U) - u lu> X ( T) N

Since there is a unique solution of K(0,u) u , a Leray-Schauder degree argument then

shows that there must exist a solution of XW,u) - u which is bounded by N in 2LP(T

(see 1171). We proceed to show (3.68) and assume without loss of generality that

a -1. lThus let u be a solqition of (2.1)-(2.3). Take difference quotients in t of

(2.1), multiply with the Qorresponding difference quotient of u, integrate over

fl x' COJI and let the differences tend to zero. After an integratin by pjtrts we get

the- identity (3.29) (see the proof of Theorems I and 2) with b 1

Next observe that this -) 1) b llowi tci ostimate the terma

ffu (*.s) * (fa g(s - T,U(',T)Jd)dsr

from below by

t
(3.69) f G(i,u(x,i))dx - f G(0,u(x,0))dx - I f G'(s,u(*,sJ)ds > f G(0,u0 (x))dx

n~ S13

by Lemma 7. Inserting this into (3.29), we get an estimate

(3.70) 0 f V- (,) ds 4 C(uo.f)

If the space dimension is n - 1, this Implies a uniform bound for Iu(x,t)I and thus

for Ig(t -s,u(x,s))I for all x,s,t; thus the regularity theory in (10) gives the

bound in (3.68).

If the space dimension is n -2, (3.70) implies that

(3.71) sup Iu(.,t)I ~~Of
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for all r ( .Picking r big enough such that r > p - q, q the growth exponent in

(2.56), this implies a bound

(3.72) sup 19(t - s~u(-,s)l C(u01 f,q)

since (2.11) implies that

(3.73) Ig(o~v) I - g(s,v) -sign v - [g(0,v) + f g'(r,v)dTJ sign v
0

4 g(O,v) * sign v - 19(0,01

for all s and v. The bound (3.72) again allows to conclude (3.68).

Finally, if n > 3, we get for any 0 4 t 4 T (see [10])

(3.74) luip (uO + C f IifS g(s - T,U(.,-r))dTi p do

ts9
(C * I+ f f iu(.,r)ir dTd.)

with r -p n 2 by (2.56). Using the calculus inequality

(3.75) lVI r C * lVIP *V -

L r ~ 2
,p (a) W12

for this choice of r and the bound (3.70) for u, (3.74) implies an integral inequality

of the form

t
(3.76) gulp 4 C * (I + f iuip ds)

Xp M0 Xp(8

for all 0 4 t 4 T, C depending only on the data and on T. Gronvall's tam"a then allows

to complete the conclusion (3.68). This finishes the proof of ITeorem S.

QED.
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Proof of Corollary 5.A: To prove part (i), we first solve (2.1)-(2.3) on some wall strip

9 x ME,£) by means of a standard fixed point argument in L (0,EcL (0)). From standard

regularity results, the solution w will be, e.g., in

LP(delw 2,p M) ) W leP ((6,c],LP(Q))

for all 6 > 0, p < * (see (101). We then re-write (2.1) on 9 x [C,T) as

t C
(3.77) a tu(xt) - Axu(xt) + f g(t - s,u(x,s))ds = f(x,t) - f g(t - s,w(xs))ds

C 0

The houndedness of w on 12 x [Ore then implies that the right-hand side of (3.77) is

in Lr WTL () l W'(C.TL 2)). Also, without loss of generality

(3.78) 1 f w(*,s)ds + w(,c), as h + 0

in all V 2,p() (p < -). Indeed, for fixed p (3.78) will hold for almost every t

replacing C, 0 ( t < C. Thus (3.78) will still hold (for almost every t replacing e)

in all V 2,N(), N a natural number. Decreasing £ if necessary, we find that (3.78)

holds. We now apply Theorem S to the equation (3.77) with boundary condition

u(,)e1,2 -w*e. Fo h rpry(.8u(,t) e w0  (9) and with initial condition u(o,C) - w(oC). From the property (3.78)

it follows that the function defined by

w(x,t), if t < C

u(x,t), if t )

is a distributional solution of (2.1)-(2.3) on all n x [0,T]h thus it is a solution for

the full problem (by the uniqueness of weak solutions of linear parabolic equations) in

the regularity class (2.61).

To prove (ii), we again write the equation (2.1) as

t C
(3.79) a tu(x,t) - x u(x,t) + f g(t - s,u(xs))ds - f(xt) - f q(t - s,u(xs))da

C 0
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and note that as above some small £ can be found which is a Lebesgue point of u(.-t)

in all W2 ,P(Q) (p < *). (Note that the solution will be in the regularity class (2.61)

for all £ > 0, 0 < T * by the same argument as used in the proof of part (i) above). ?b

apply Corollary 3 on 0 x [,-), it is sufficient to show that

£

(3.80) (xt) + f q(t - s,u(x,s))ds e L (C,a;L (0))
0

and that

((.81) I f g'(t - s,u(x,s))ds 1
2
dx b(t)) /2dt <

C a 0

Again, it is immediate that u will be essentially bounded on 9 x [0,c], if we choose

C small enough; the property (3.80) then follows from the fact that g(s,u) is

increasing in u and g(s,u) * sign u is decreasing in a. Property (3.81) follows

since g'(s,u) is decreasing in u and g'(s,u) * sign u is increasing in s (and

negative); thus, if K is a bound for lul on S x [O,£], and writing

w(s) - lg'(S,K)l + Ig,(s,-K)I

W(s) Ig(s,K)l + Ig(s,-K)l

we have

£

(3.82) I (f If g'(t - su(x,s))dsl2dx b(t))/2dt
11 0

< £ w(t - s)ds * b'/2(t)dt 1/2

£0

SC W(t - ) - V(t)) b 12(t)dt <
C

since
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(3.83) Ig(s.K)I ' ~) Ig(O,2OI

and b is an exponential function.

To prove (iii), we use exactly the same arguments. Since in this case b(-) is not

necessarily an exponential function, we need the integrability condition (2.62) to deduce

(3.81) from (3.83).

QED.
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4. Ixtensions and Generalizations

The initial-boundary value problem (2.1)-(2.3) represents a typical, however special

situation, in which the "energy-type" estimate leading to the inequalities (2.15), (2.16)

can be applied. Several extensions are imediate which we want to mention here, without

stating them as separate results.

First, it is clear that the case of inhomogeneous, but constant boundary data, in

which (2.3) is replaced by

(4.1) u(x,t) uo(x), (x e 31, t ) 0)

with u. e W2 '(Q), presents no additional difficulties. Solutions of (2.1), (2.2),

(4.1) will still be in the class (2.4), and all the results of Section 2 are valid without

any modification, since it was only assumed in the proofs that 3 tul an (,t) E 0 in

H
1/2 

(a0). By considering v(x,t) : u(x,t) u0 (x), this problem can be reduced to a

problem of type (2.1)-(2.3) with an x-dependent function g in the integral term# this

leads to the modification of (2.1):

t

(4.2) 3 tu(x,t) - Axu(x,t) + f g(t - *,x,u(x,s))ds - f(x,t) (x e n, t e (0,-))
0

If g(*,*,.) is continuous in all three arguments, and if all the properties assumed

for g hold uniformly with respect to x, similar results to Theorems 1, 2 5 and

Corollaries 3, 4, SA are immediate, since only the pointwise version of Lemas 7 was used

in the proofs. To show Theorems I and 2 it is, in fact, only necessary to assume that

Ig(s,u,x)l 4 i(s) M W (-,R) for all s 4 T, Jul R

with 0 e L (9), and that g he meesurable in x for fixed s,u and continuous in

(s,u) for a.c. x. To show the convergence of solutions (Corollaries 3, 4) or the

existence (Theorem 5), it will be necessary to agsum that u e Lr () for some r )1

and to relate r to the growth conditions formulated in (2.38) resp. in (2.56). Since

these generalizations are not immediately motivated and more or less straightforward, we

shall not give the details.
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The question of t-dependent Dirichlet boundary data seems to be more delicatei we do

not have a satisfactory way of generalizing our results to this case.

It is also immediate from the proofs that all results remain valid if -6x is

replaced in (2.1) by a second order operator in divergence form,

n
(4.3) A0 : u + I x (aij(X)x u)

ij-1 i j

with C1+ (f)-coefficients aij, which is uniformly elliptic. It is even possible to

include a general operator on a possibly unbounded domain 0,

(4.4) A : u + 1 0( (a (x)3 u + bi( x)u) + C (X)x * u) + d(x) • u

i,j xi ij j j

as long as a Garding-type inequality

(4.5) (Au,u) 2 ) IV ul2 2( ) x 2
L (9)L Mfl

holds with A ) 0. The constant )1 then replaces the eigenvalue X0 in (2.17) and

(2.23) and in the corresponding conclusions.

We next indicate how to obtain generalizations of these results to some related

problems.

Boundary conditions of the third type.

The problem (2.1), (2.2) with the boundary condition

(4.6) 3 VU(xt) + u(x) @ u(xot) = fl(x,t), x 6 S3 t > 0

can also be treated. Here av is the (outer) normal derivative, a(.) o 0 is so" C -

function, and f, : 30 x 0,in) + R is a given function. We assume that

(4.7) a 0

which implies that the principal eigenvalue X of the negative Laplacian with a

homogeneous boundary condition (4.6) is positive:

(4.8) ) "inf{f IVxwI 2 + f a • w2 1w e w1' 2(n), f w2 - 1) > 0
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We state the corresponding result on the existence and asymptotic behavior of solutions as

Theorem 9:

a) Let uO, f, g, and G satisfy (2.5)-(2.7), (2.9)-(2.12), (2.55) and (2.56). Also,

let

(4.9) f, e L (0,-;W 1'(an)) ) Wl1 '([0)L( )

and assume that

(4.10) 3Vu 0 + a * u0 - f1 (-,0) on 3 .

Then the problem (2.1), (2.2), (4.6) has a solution u on 11 x ([0m) which in for all

T > 0 and all p < - in the regularity class

(4.11) CplT) - LP(0,TW
2
,P(()) n WI'p([0,T],LPl(M)

b) If also (2.13) and (2.14) hold for some K > 0 and

(4.12) f (b(t) * f 13 f(0,t)t
2 ) 

1/2dr <-
0 (

(4.13) 13 t fIl., r) • b(s)ds < -

with r 1, if n 1, r > I arbitrary, if n - 2 r - -1, if n > 2, and

n

(4.14) b(s) - exp(t - min [,2 - (X1 -I ))

where A1 is defined in (4.8) and X I 
> 
C > 0, then

f 13tu(xt)2dx n b(t) fI CO  for all t 0 n

(4.16) dx dt 4 C for all 6 0 a
0 a (log b(t) + 1)

Here CO, Ca depend on u0  and on the quantities in (4.12) and (4.13).

Also, if g satisfies the sharper growth condition (2.38), then

(4.17) u(C,t) + u* in C1 (6), as t * ,

where u.(*) solves the elliptic equation
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-&u (x) + r g(n,u.(x))ds lim f(x,t)

(4.18)0 '

t u (x) + a(x) • u.(x) = lim fl(x,t)

c) If in addition to the conditions in a) (2.19) holds and with K(.} as in (2.20),

>E > 0,

t
(4.19) b(t) = exp(f min(I(s),2 (AI - )}da)

0

the data satisfy (4.12) and (4.13), then again (4.15) and (4.16) hold. If b satisfies

for some 6 > 0

(4.20) f ( b(s) + 1) ds ,
0 b(s) do <

and if the growth condition (2.38) holds for g, then also the convergence conclusion

(4.17) is true, and the limit u. satisfies the equation (4.18).

Before we indicate the proof, it should be remarked that the l~mit

lim f1 (-,t) e W'.(OR)t

exists due to the assumptions (4.9), (4.13), and (4.18). From the general theory for

elliptic boundary value problems (cf. (10]) it follows that u e W2
'p(9) for all

p < ..

Proof of Theorem 9: The main new problems in the proof, compared with the arguments given

in Section 3, arise from the fact that the boundary data in (4.6) now depend on t. Hence

we shall only give the details for the changes that are necessary for this phenomenon, and

remain sketchy in the unchanged parts of the proof. Also, since no new differences appear

between the proofs for b) and c), only the former statement will be proven.
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We start with showing the estimates (4.15) and (4.16) for a solution u that belongs

already to the class (4.11) for all p < - and all positive T. From the definition of

x1 and from standard trace and imbedding theorems, cf. [101, it follows that for all

w e w1 ,2 (SI) and all > > 0

(4.21) f IVxw l 2 . 2 w2 - £) •f w2 + C(C) . (f Iwl2 ' ) r '

' 2r
with r - , r as in (4.13), resp.

(4.22) f w 1 2 + a(a) w 2(a) + a(b) w2(b) )

(A - C) f w
2  

C() (a) + w2(b))

if n - 1 and 1 - (a,b] C R. Here C(E) > 0, if C > 0. Define b(-) as in (4.18)

and proceed as in the proof of Theorem 1, i.e. differentiate the equation (2.1) (formally)

with respect to t, multiply with b(t) * 
3tu(*,t), and integrate over a x (0,j]. We

then arrive at an identity of the form (3.29), with additional terms

(4.23) f f a(x} • 1u(x,s)I 2do(x) • b(s)ds
0 au

appearing on the left-hand side and

(4.24) f f t u(x,s) * 3 tf (x,s)do(x) * b(s)ds
0 Mn

appearing on the right-hand side. The quantity (4.24) can be estimated by
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ft
(4.25) f (f la(.,s) 2r')2r• (f 1 tfI(*.,) 2r}2r b(s)ds

0 3

t 2r' 1.
2 C(M) f (f 3 u.,sIr)

r  
* b(s)ds +

0 ail

with C(M) > 0 from the trace inequality (4.21). Using now (4.13) and the term (4.25) on

the left-hand side and estimating all other quantities as in the previous proof, we get

again the inequality (3.33) (with the modified b(.)), with some additional constants

appearing on the right-hand side. The rest of the proof then remains unchanged, and the

estimates (4.15) and (4.16) follow. In the case of one space dimension the procedure only

needs some formal modification. Note that 3t
u 

is (at least) in L2(O,TIW"(n)), so

that the trace of a u actually exists.

Next, we give the necessary extension of the arguments for the existence proof. The

previous arguments show that under the assumptions stated in part a), any solution of

(2.1), (2.2), (4.6) satisfies an a priori estimate

T 2

(4.26) f f IVx 3
tU(.,t)l dxdt 4 C

On

for all T > 0, C only depending on the data. This estimate is to be exploited in a

bootstrapping argument, with the proper modification for the inhomogeneous boundary

conditions. We write the solution as u = wI + w2 , where

t
(4.27) twI1(*,t) - Awl(,t) + f g(t - S,(W I + w2)(-,s))ds = f(',t) - t w 2(*,t)

0

(4.28) w1 (*,0) = U0 - w2 1",01

(4.29) 3 w1 + a w1 - 0 on 3S) x (0,T)
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(4.30) -Aw2( ,t) - 0

(4.31) 3v 2 (.,t) + 0() ' w2(,t) = f,(o,t) on aM x (0,T]

Using the se type of degree argument as in the proof of Theorem 5 in Section 3, it

is sufficient to show that wI and w2 are a priori bounded in any X (T) (seep

(4.11)). Starting with w2 1 we denote by B the operator that maps boundary data v to

solutions w - Bv of

-A w 0 in ,
(4.32) x

aw + a - w v on a

Since A I ) 0, the well-known results on non-homogeneous boundary value problems apply,

see 113].

1- P 2,p(4.33) B : WT P (3) + W 2()

is bounded for all p < -, whqre the fractional order Sobolev spaces are defined as in
1 a 1- -,p

(13]. Since WI (MS) -O W (39) for all p, the condition (4.9) implies that

w2 e L (0,T;W
2
'9()) for all p. Also, from [13],

1+ - p

(4.34) B : L(3fl) + W P (M)

is bounded for every 6 • 0, which shows that also w 2  w I'm([0,T],L(Q)) C

V ',P([,T,LP(2)) for all p <

To show that w1 e Xp (T) for all p < I it is enough to invoke the general

regularity results in [8] for solutions of linear evolution equations of "parabolic'

type. Also, observe that the right-hand side f - 3tw 2  in (4.27) is in LP(0,TILP(9))

for all p < - and that the initial data for w1  is in all W2,P(9) and satisfies the

compatibility condition

V w 1(,0) + - w 1(-,0) = 0

by construction. The X p(T)-bound for WI then is obtained by means of the same

"bootstrapping" argument as in the proof of Theorem 5, making use of the growth conditions

on 9. It remains to show the convergence
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u(.*,t} + u~ 1
(4.35) uniformly on

V u(.,t) + VxU.x

Define A as the Laplacian in LP(G) with
p

D(A ) e w 2, W2 (SIMa + cw -0 on SI

and let (S p(t)) t 0  be the analytic semigroup generated by Ap in L (0) (see 17]).

Then analogous estimates of (3.45), (3.46) hold, the decay rate X0 being replaced by

A from (4.8). We write u = wI + w2, w2 the solution of (4.30), (4.31), w, defined

as the solution of (4.27)-(4.29), i.e. as

t

(4.36) w1 (t) S (t)(u - w2(0)) + f S (t - s)(f(s) - a w2(s))ds
p 0 2 0 p 2

t a
+ f s (t - 8)[f g(s - r,w 1 (T) + w2(t))dT]ds

0 p 0

where the x-dependence has been suppressed for convenience. The convergence result (4.17)

then follows as in the proof of Corollaries 3 and 4 if it can be shown that

(4.37) sup Iw2 ( ,t)I 2 < -

(4.38) sup IA w I(,t)I
t)o L )

for a sufficiently close to I and p sufficiently large (p > n). The estimate

(4.37) again follows from (4.33) and the conditions on f,; (4.38) is derived in exactly

the same way as the corresponding estimates for the solution of the Oirichlet problem in

(3.53)-(3.63). This concludes the proof of Theorem 9.

QED.

We remark that the conditions leading to the existence of solutions can be weakened

to resemble those in Theorem 5. The necessary modifications in the statement and in the

proof are obvious.
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Mixed boundary conditions, nonlinear boundary conditions.

The boundary conditions (2.3) reep. (4.6) for the integro-differential equation (2.1)

can be further combined and generalized. We briefly indicate two possibilities.

First, assume that an can be split into two parts, an - r I U r 2 , which we assume

to be closed and disjoint (to avoid regularity problems at the interface points).

Replacing the boundary conditions (2.3) reap. (4.6) by

(4.39) 
u(.,t) -_0 on F 1 for 0 4 t

I a u(*,t) + a(') * u(,t) - fI(*,t) on r2  for 0 C t

then gives a mixed boundary value problem that can obviously be treated in the same manner

as the problems discussed further above. The eigenvalue

A- inff IVxwI
2 + f a . w2 Iw e w 1,2 (n), wi1 , f w2 -

12 2

then gives the decay rate for the associated homogeneous heat equation and replaces XI

in Theorem 9, giving the same sort of convergence result.

It is also possible to replace (4.6) by a nonlinear boundary condition

(4.40) aVu(*,t) 8(u(,t)) - 0 on an, t > 0

with + R + being a (locally) Lipschitz-continuous function that Is monotonically

increasing. Under the assumption that

(4.41) B'(r) ) a0 > 0 for a.e. r

convergence results can be established, showing that the integro-differential equation has

solutions that converge to an equilibrium state u. The role of the eigenvalues AOA I

is played by

A3 - inf(f IVwI 2 + . f w2 1w e W1,2(g), f . 1 .
0 an a

However, in this situation it is not possible to employ directly results from linear

seiroup theory to show, e.g., the existence of a solution in the class described in

(2.4) or the convergence u(',t) + u.(() in C1 (5). Rather, direct methods for the

*unperturbed' problem (g(s,u) 0 0) will have to be carried over cf. [6].

-43-



Nquations of higher order

For the evolution equation

t
(4.42) atu(xt) + (-Ax)mu(xt) + f g(t - 8,u(xs))ds = f(xt) (x e o, 0 < t)

0

with initial and boundary conditions

(4.43) u(*,O) u u0 (1) in Q

(4.44) u(*,t)Il a 3(1 (0 t)' 0

similar convergence (and existence) results can be derived. In (4.42), a I is some

integer, and in (4.44) 3
k  

denotes the k-th normal derivative (with respect to the outer
V

2m+anormal of 30). We assume here that 39 is in the class C , a > 0.

Semilinear equations of the type (4.42), with the integral term replaced by

g0(Wxt)), have been discussed by various authors; cf. [9) for a general existence and

regularity result. We define (for fixed m)
A4  2 nfff V 2 WO' 2 (), f 

2  " 1)
A -iffIVXwI Iwe w.-1

Then )4 > 0 gives the decay rate for solutions of the "unperturbed' equation (4.42)

(f S 0, g 0), as can be seen from the theory of analytic semigroups ((73). For (4.42),

we have the following result that is parallel to the previous theorems:

Theorem 10: Let g,G satisfy (2.5), (2.6), (2.10)-(2.12), and (2.55). Assume that for

n ) 2m

(4.45) Ig(O,w)I 4 C * (Iwlp(nm) + 1) for all w e a

C being some constant, p(2m ') being some positive number, and

(4.46) 2-(2n' , if n > 2m.
n - 2m

Also, let

(4.47) e W 2 '(0) fl)n W",
2
(a)

UO 0

and let f satisfy (2.34).
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Then the problem (4.42)-(4.44) has a solution u on a x (0,-) which is in the

class

(4.48) Yp(T) - LP(o,;w 2mp'p(9)) n W"Pl(o,T],LP M)

for all p < - and ll positive T.

b) If g also satisfies (2.13), (2.14) for some K > 0 and if

a./
(4.49) f (b(t) - f latf(.,t) 2 dt < -

0 0

with

(4.50) b(t) = exp(t * ain(K,2X4 )

then (4.15) and

(4.51) f f IVx3tu(x,t)I 2 
dx  

b(t) - 4 C
0 a0 (log b(t) + I)

hold for all 8 0 0. Here C8  depends on u0  and on the quantity in (4.49). Also, if a

strict inequality holds for the growth exponent in (4.46) and if f is essentially

uniformly bounded on Q x (0,-), then

(4.52) u(*,t) + u. in C-(0), as t +

where u.(") solves the elliptic problem

(-Ax) a%(x) + f g(s.u(x))ds = lim f(x,t)
0 t+.

(4.53)

c) If in addition to the conditions in a) (2.19) and (2.20) hold for g and if the

data f satisfies (4.49), b(*) defined by

t

(4.54) b(t) - exp(f min[K(s),2X41ds)
0
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K(*) as in (2.20), then again (4.15) and (4.51) hold. If b satisfies (4.18) for some

6 > 0, if strict inequality holds for the growth exponent in (4.46), and if f is

essentially uniformly bounded on l x (0,=), then also the convergence (4.52) holds, and

U solves the elliptic problem (4.53).

The proof of this theorem does not differ from the arguments given in Section 3;

hence we do not give its details and only point out the necessary changes. First, under

the assumptions of part b) and c), the estimates (4.15) and (4.51) follow in precisely the

same way as in the proofs of Theorems I and 2 - the term (-A ) mu in the equation (4.42)
x

leading to an estimate for the Wf~
2
-norm of at

u  
rather than for the W _'

2
-norm as in,

e.g., estimate (2.16). Similarly, under the conditions stated in part a), an estimate

T2

(4.55) f j IV03tu(',t) 2 dt 4 (:(data, T

00 t

follows. Next, to prove existence (in part a)) and the convergence results in part b) and

c), it is again convenient to re-write the solution u by means of a variation-of-

constants formula,

t t 9
u(t) p(t)u0 + f §p(t - s)f(s)ds + f §p(t - s) f g(s - r,u(r))drds '0 0 0

where x-arguments have been omitted. Here S () is the analytic semigroup generated byp

(-A)' = A in LP(M) under zero Dirichlet boundary conditions (4.44). Then (3.45)x P

holds, instead of (3.46) we have for all n ( p (

(4.57) lvI 2 C • li vi1
-
C IVl

C (0) P LP(a) Wm'2 (Q)

if v P D((A), I > a > 0, such that I - a and E > 0 are sufficiently small (of. [7]),
p

Aep-ndinq on the size of p.

As in the proof of Corollaries 3 and 4, it is enough to prove that under the

conditions of Theorem 10
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(4.58) I vu(t)I 4 C
P LP)

for some a and p such that (4.57) holds. This is again done by a "bootstrapping"

argument for n > 2m and by direct arguments for n 4 2m. First, if n 4 2m, then the a

priori estimate (4.55) together with suitable embedding theorems ([10) shows that

u(*,t) is uniformly (in t) bounded in any LP(Q), p 4 -, if n < 2m, p <, if

n = 2m. The estimate (3.54) together with the growth condition (4.45) (if n = 2m) shows

that the same type of bound also holds for the nonlinear term

t
f g(t - su(.,s))ds
0

Using (3.54) and this bound in the variation of constants formula (4.56) then implies the

bound (4.58), in the same way as in the case of an elliptic operator of second order.

If n > 2., we define w(,) as in (3.55) (with l replacing Ap) and derive the

estimate (3.56) (with A4 instead of 0 ). Then pick a such that

(4.59) > a > (p(nm) - 1) • 4

p(n,m) as in (4.46), and close enough to I such that (4.57) holds. Next choose r <

such that

(4.60) - (p(nm) - 1) n 2m . I - > I 2am

p 2n r n p n

This implies ([71)

(4.61) Iv3
p 

- C • Il IvP-1Lp- p  2m- ,r %P,2

and

(4.62) Ivl < A • vl + C(E)Ivi

.2m-,r P L
p  

Vm.
2

for all suitable v, for all E > 0 (with some C(C) > 0), and with the abbreviation

p p(nm). From (4.61) and (4.62) and from the variation of constants formula, we get

-47-



an integral inequality for w(.) which can be chosen such that it has only bounded

solutions. This completes the proof of (4.58) and thus of parts b) and c) of Theorem 10.

For the proof of part a), a fixed point argment as in the proof of Theorem 5 is

used, together with optimal regularity estimates in the spaces Y pT) (cf. (4.48)); see

(8] for the necessary estimates for linear problems. Details are left to the reader.

QED.

Again, as in the proofs of Corollaries 3 and 4 as compared to the proof of Theorem 5,

using only the "sub-optimal" regularity estimates that are contained in (3.45) excludes

n + 2m
the "limiting" growth exponent n - 2m , but displays the asymptotic behavior of the

solution semigroup more clearly.

For the semilinear version of (4.42)-(4.44) (the integral term replaced by

C0(u(x,t)), it is known that global solutions u exist, if go has, e.g., the smse

growth properties that are assumed for g(0,.) in Theorem 10.a). However, in the case of

n + 21m
the limiting growth exponent n - 2m , regularity is much harder to prove, cf. [9).

Also, for the limit equation (4.53), the existence and regularity of solutions has

been shown in (161, again for the case that corresponds to the limiting growth exponent

n + 2.n - , by means of direct methods for elliptic equations. It in not clear how to

extend the convergence result of Theorem 10.b, c to the case of a limiting growth

exponent, except for "small" nonlinearities (9(s,.) multiplied by c * g(s,*)). To do

this, one uses the "optimal" growth estimates in the spaces YM(T) and notices that the

mp
assumption on the spectrum of (-A)

m  
(A4 > 0) allows to get T-independent constants in

the corresponding regularity estimates.

We conclude with a few remarks concerning systems of (second order) equations with

integral terms of the form in (2.1) and higher order equations of the form (4.42) with

nonlinear integro-differential operators
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(4.62) f~ I ag t a (s)d0 101<m x 0 x 181<0

instead of the polynomial type integral operator in (4.42).

In the case of a system, it is still possible to handle finite sum integral operators

of the form

N t
(4.63) 1 f ai(t - *)*i (*u(.,))dg

i-0

with scalar kernels a i (*) and vector functions g ( M - YiM(~, the Gi being convex,

by utilizing a suitable vector-valued version of Lema 6 (which holds almost vithout

change in the wording). Similarly, for integral operators of the type (4.62) having the

form

(4.64)~ N a~ ~md
(46) a1 (t - s) 1 -4. s,(t )%s'

0 i-1 lakE

ii

(4.65) g(u) - (-1)10 -GiMc, G' convex

and satisfy suitable growth estimates.

Oven Questions.

a) It is not clear whether solutions of (1.1) or of the related problems discussed above

will be unique under the assumptions that have been used, in contrast to the situation

for the semilinear parabolic equation (1.5), where monotonicity of g(x,*) implies

uniqueness. A sufficient condition for the uniqueness of solutions of (1.1) is that

g(.,x,*) he locally Lipschitz-continuous in u uniformly for (x..) in some

0 x 1O0c), on the other hand, it is also well-known that solutions of the limit
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equation (2.42) are unique (with the boundary conditions discussed above), if

u + f g(s,u)ds
0

is merely monotone non-decreasing.

b) For the semilinear equation (1.5), the existence of regular solutions, convergence

rates as (1.9), and the convergence u(o,t) + U() in C (2) follows without growth

restrictions on the nonlinear term j, since it is possible to bound solutions

uniformly on 0 x (0,-) by means of the maximum principle. It is not clear whether

these properties still hold for solutions of (1.1), if one drops the growth

restrictions (2.38). The existence of oscillatory solutions with positive initial

data (cf. Section 1) shows that a comparison principle does not hold.

c) Using the regularizing effects of the non-linear semigroup that is generated by

u + -A u + g(u)
x

in LP(Q) (I f p < -), it is still possible to show the convergence u(,t) +

for less regular initial data (see [181): One shows that for some C > 0 the

solution u of (1.5) will be in L ( ,c;L (U)) and hence (via linear semigroup
2

theory) u(',E) e C2 (). Taking u(*,E) as an initial value, one sees that the

regularity of u(°,0) plays a minor role for the convergence behavior. For the

integro-differential equation (1.1), the regularity of u on 11 x (0,E) does play a

role, since the effect of irregular initial data is not "forgotten" due to the

presence of the integral term. Thus it will in general not be possible to extend the

class of initial data for which convergence in C (U) can be shown beyond L7() (as

described in Corollary SA). It is conceivable that convergence in some LP(Q) can be

shown if g(s,.) satisfies some polynomial growth conditions and u0  is in some

L r(,), r < .
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d) For solutions of the aemilinear equation (1.5) as well as of the limit equation

(2.42), the solution can vanish identically on some parts of (9, if, e.g.,

;(u) -u ,as u + 0

with 0 4 a < 1, and the boundary data and the size of 2 are in some sense

compatible ([191). It is not clear whether this free-boundary phenomenon still holds

for solutions of the integro-ditferential equation.
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